
ConvoForest Classification of New and Familiar
Faces using EEG

1st Femi WILLIAM
Dept. of computer science

University of Alabama in Huntsville
Huntsville, USA

fww0001@uah.edu

Ramazan Aygun
Dept. of computer science
Kennesaw State University

Marietta, USA
raygun@kennesaw.edu

Abstract—Face recognition by familiarity or recollection is a
task people perform routinely in their daily lives. In the process
of automating human experiences, existing studies have applied
traditional machine learning applications and deep learning
techniques on enough datasets (samples >= 1000) for human
faces classification. However, the application of deep learning
on electroencephalography (EEG) for new and familiar faces
classification with limited data (samples < 100) has not been
studied. We devised a face familiarity judgment EEG exper-
iment and recruited eleven (11) participants for our study.
We represented each trial by a visualization technique upon
the generated EEG. The average power bands (theta, alpha,
lower beta, higher beta, and gamma) from each channel at
every 125ms window were computed and combined to form an
image. We applied ”ConvoForest,” a combination of convolution
neural network (CNN) and random forest for classification.
In comparison with conventional CNN where the dense layer
was present, ”ConvoForest” performed better with an average
subject-dependent classification accuracy of 79.0% and an F1

score of 0.8
Index Terms—EEG, new face, familiar face, CNN, ConvoForest

I. INTRODUCTION

The electrical activity of the brain is measured via an
electroencephalography (EEG) exam. EEG scans are done
by putting EEG sensors on the scalp. It has been applied
for brain stimulation, brain-computer interface, brain disease
detection and more recently to enhance social interactions.
Faces are undeniably strong social stimuli because they
provide information about identity, gender, age, emotion,
and visual speech [1]. However, the connection between a
face and the different information it reveals through face
processing had sparked a lot of discussion and debate. Our
attention in this study is on classifying new or familiar faces
based on the EEG of subjects who are made to see a never
seen before and a face previously seen.

The human idea of facial recognition is based on the
concept of familiarity. For many years, it has been established
that the impression of familiar and unknown faces vary in
a variety of ways [2] [3]. According to [4] [5] [6], familiar
faces are acknowledged faster and more accurately than
unknown faces in recognition memory experiments.

In the process of automating human face familiarity
judgment, authors in [7] applied pre-trained deep learning
convolution neural network (AlexNet) and anti-Hebbian
training for generic image familiarity classification. But In
[8], they applied only faces for familiarity detection studies
where the large-scale face dataset called VGGFace2 was used.
They found that memory systems with complex synapses
can be used in real-world applications such as familiarity
detection. However, the classification of familiar and new
faces using a deep learning approach on a limited EEG
dataset has not been researched to the best of our knowledge.

In this study, we devised face presentation stimuli, where
faces are sequentially presented without repetition to the
user. After seeing ten unique faces, they are tested with
two faces (one seen and one unseen) shown to them and
asked to identify the familiar face. This process went on
for ten sets of unique trial blocks. Participants’ EEG data
were acquired as they experimented. During analysis, each
EEG electrode channel was decomposed and identified as
distinct waves with different frequencies using Fast Fourier
Transform (FFT). The average power value at every 125ms
window for five frequency bands (theta (4 – 8 Hz), alpha
(8 – 12 Hz), low beta (12 – 18 Hz), high beta (18 – 25
Hz), and gamma (18 – 25 Hz)) were collected from each
electrode channel. Consequently, each trial became a 14 ∗ 40
2D matrix for 1s of data. We represented each trial by
a visualization technique to form an image. We applied
”ConvoForest,” a combination of convolution neural network
CNN) and random forest for classification. In comparison
with conventional end-to-end CNN where the dense layer
was present, ”ConvoForest” performed better with an average
subject-dependent classification accuracy of 79.0% and an F1

score of 0.8

This paper is organized as follows. The next section dis-
cusses the background and related works. Section III focuses
on methods and materials. Section IV presents the results and
discussions. The last section concludes our paper.
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II. RELATED WORKS

In this section, we reviewed the literature on face recogni-
tion theories, classification of new, familiar, and remembered
faces using encephalography (EEG), event-related potential
(ERP), statistics, and machine learning techniques.

A. Theories on face recognition and familiarity judgement

Memory performance varies significantly among individuals
[9], it can be observed on both familiarity and recollection
abilities of people. Familiar faces are encoded with a com-
prehensive set of visual, semantic, and emotional cues that
facilitate their perception and identification [10]. On the other
hand, new faces may pose a more significant challenge to
human perception and memory systems. People can recognize
familiar faces in bad lighting, low-quality photos, and from a
variety of angles [11] [12]. Thus, successfully encoded faces
in memories could be successfully decoded or acknowledged
if they do not decay before retrieval. According to [13], new
experiences in general and a new face, in particular, excite
and change old memories, and vice versa; thus, encoding
and retrieval are closely connected. Encoding precedes storage
without indicating each newly encountered event, and storage
precedes retrieval without implying it. Face recognition is a
task that humans perform routinely and effortlessly in their
daily lives. Since the emergence of artificial intelligence, deep
learning models can now perform at human levels on real-
world face recognition tests [14].

B. EEG and ERP Studies on Face Classification

EEG signals directly measure neural activities by scalp
sensors [15]. In addition, they are used to derive ERPs,
which are used to monitor brain voltage changes that occur
after (or before) specific visual, auditory, or other sensory
inputs, as well as signs signaling motor preparation, motor
execution, or covert mental functions [16]. Previous research
on face-related ERP responses has revealed that the face
stimuli are linked to the Vertex Positive Potential (VPP) [17],
the N170 component unique to face represents late stages in
the structural face encoding [18]. According to [19], the N250
is associated with the acquisition of a facial representation
across many photographs.

The authors in [20], applied CNN to classify single-trial
EEG signals when subjects viewed target and non-target face
stimuli, and they got 0.936 ± 0.095 for subject-independent
analysis and 0.839 ± 0.049 for subject-independent analysis.
CNN models were applied on EEG to effectively predict eye
states (open or closed) among ten subjects in a resting state
[21]. Without using CNN, however, authors in [22], devised an
EEG feature extraction method and applied a support vector
machine (SVM) for pattern recognition system for person
recognition. The concept of separating feature extraction and
classification processes has been applied for a long time
before the advent of CNN. However, CNN combines deep
feature engineering techniques and the classification of any
structured data. One of the major factors contributing to the

success of deep learning such as CNN is the availability of
massive datasets, say, millions of images in datasets like
ImageNet [23] [24]. The asymptotic analysis of conventional
machine learning and deep learning is described in Figure 1.

Fig. 1: Deep learning and regular machine learning
performance on data

Thus, there are three questions: First, can limited EEG
dataset classification still benefit from the CNN technique?
Second, how does the combination of a CNN technique and
random forest perform on limited data compared to CNN?
Three, how do the ERPs and time-frequency analyses reflect
the effects of new and familiar faces. In the following sections,
we present the ”ConvoForest” technique and time-frequency
analyses on new and familiar faces.

III. MATERIALS AND METHODS

In this section, we present the components and strate-
gies employed in our studies. We describe the: stimuli pre-
sentation, data preprocessing, time-frequency analysis, and
the classification technique. The code written for these
analyses is on a public GitHub repository available at
https://github.com/wilie247/SpyderWorks/tree/main/SpyderWorks.

A. Software and Stimuli

The experiment protocol is similar to the one used in [15],
but we changed the stimuli presentation duration and inter-
block interval. Our changes made it possible to study new
faces and be tested on familiarity within a 30s time frame.
We used Psychopy [25] to present faces, and the faces were
obtained from the Chicago face database [26]. We displayed a
group of 10 unique faces sequentially to the user from a block
of trials; we showed each face for 2s without any inter-stimulus
delay. The faces consist of males and females from all races.
The recognition phase starts 2.2s after completing a block of
faces from each study phase. At recognition testing, two faces
with thesame gender were sequentially positioned on the left
and the right of the screen in random order; among these faces,
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only one appeared at the study block. Participants were tested
on all ten faces previously seen whether they knew familiar
faces or not. In total, ten blocks of ten faces each were applied
during the study, and ten blocks with twenty faces each were
applied at testing. Figure 2 describes the presentations during
study and testing.

Fig. 2: (A) faces stimuli study protocol, 2s display per face
from a block of 10 faces during study phase without

inter-stimulus delay. (B) faces stimuli familiarity testing
protocol, one face from seen and one unseen face appear for

2s without inter-stimulus delay.

B. Participants and data acquisition

A total of 11 healthy participants (aged 19-40 years) with
an average age of 26.36 (±6.83) participated in this study.
All subjects reported normal or corrected vision. Participants
gave written consent according to the institutional review
board(IRB) approved protocols before participating. The EEG
data were recorded using Emotiv EpocX, following the 10–20
international system. This device comprises 14 electrodes
positioned at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, and AF4 locations and has a sampling rate of
128 Hz.

C. Emotiv EEG Data and preparation

Emotiv pro API generates an EEG quality value for each
EEG channel. This value is produced based on channel
contact quality, machine learning signal quality, and signal
magnitude quality. We ran our analyses on one second of 128
samples data produced after stimuli onset. The EEG quality

reported per sampling rate (128) is between 0 and 8 per
channel. To guarantee the integrity of the EEG signals used
for our analyses. We rejected trials (both corresponding study
and familiarity phase) from channels whose EEG quality
value was less than 4.

Each EEG electrode channel was decomposed and identified
as distinct waves with different frequencies using Fast Fourier
Transform (FFT). The average power value at every 125ms
window for five frequency bands (theta (4 – 8 Hz), alpha
(8 – 12 Hz), low beta (12 – 18 Hz), high beta (18 – 25
Hz), and gamma (18 – 25 Hz)) were collected from each
electrode channel. Consequently, each trial became a 14 ∗ 40
2D matrix for 1s of data. Then we visualized the data using
a colormap ”jet” [27] from the Python Matplotlib library and
saved it as an image file. The ”jet” colormap intensities are
in the range [0,1], and the color scheme looks like Figure 3.
The transformation from EEG to image file was done for all
trials. In classification, we split our image files dataset into
70% for training, 15% for validation, and 15% for testing.
For preprocessing and analysis, we used a 64-bit windows ten
machine, Intel(R) Core(TM) i7 CPU @ 1.80GHz (8 CPUs)
2̃.3GHz and 16Gig RAM. It took about 2s for each subject’s
dataset training and validation and less than 500ms for testing.

Fig. 3: Jet Color map intensity spectrum. Red highly intense
and blue least intense

D. ConvoForest for Classification

We coined the word ”ConvoForest” because the algorithm
combines a convolution neural network for feature extraction
and random forest for classification. First, we removed the
dense layer of the convolution neural network and then re-
placed it with a random forest. The dense layers consist of 128
neurons and another prediction layer with two neurons. Before
removing the fully connected layer, the network structure
is described in Figure 5, where we applied the filter size
3x3 in all convolution layers. We believe the ”ConvoForest”
approach will effectively classify a limited dataset where a
fully connected (dense) layer classification may not efficiently
generalize its performance on a new dataset. The reason is
that; first, the random forest is an ensemble technique that
categorizes trials based on a randomly selected subset of the
total features; second, it does not overfit as the number of trees
grows. Figure 4 illustrates our approach, and the mathematical
representation of the convolution was computed using (1).

conv(I,K)x,y =
nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki,j,kIx+i−1,y+j−1,k, (1)

After the fully connected layer removal, we flattened the
extracted features. Then, we applied random forest [28] [29]
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Fig. 4: CNN + Random Forest

Fig. 5: CNN structure and parameter before dense layer
removal

for classification because it is robust to outliers and noise, and
the algorithm does not overfit the data.

IV. RESULTS AND DISCUSSION

This section discusses the time-frequency analysis at
electrode site O1 and classification results.

A. Time-frequency analysis

The change in the frequency domain of a non-stationary
EEG signal as time increases is described by time-frequency
decomposition. Figure 6 represents the EEG frequency and
time relationship at the O1 electrode site when users were
shown a new face stimulus. We observed that between
300ms and 400ms, there were significant activities at the
delta(1-4Hz), theta(4-8Hz), and low beta(8-13Hz) frequency

bands. However, in Figure 7, at the same O1 electrode site,
more activities were observed at the delta, theta, alpha, and
beta frequency bands at a very early stage between 50ms
and 300ms after stimulus onset. This is consistent with the
literature [4] [5] [6] where it was reported that familiar faces
are acknowledged faster and more accurately than unknown
faces in recognition memory experiments.

Fig. 6: Study phase participant seeing a face for the first time

Fig. 7: Familiarity testing participant seeing a face for the
second time

With respect to the plot in Figure 8, The scale-free (1/f)
component from each frequency bands is plotted. Brain ac-
tivities dynamics often follow the 1/f characteristics. Some
studies call it pink noise. It is the phenomenon where the
power spectral density is inversely proportional to the fre-
quencies, i.e., low frequencies have high power, and high
frequencies produce low power. Increasing evidence in recent
years suggests that the 1/f brain activity contributes actively to
brain functioning. Therefore, concerning theta, experts believe
that the theta waves are essential for processing information
and making memories; there are actually two categories of
the theta, the higher range of theta brainwaves are commonly
found when we are engaging in complex, inwardly-focused
problem solving – like doing math problems in our head.
And the low theta waves are present when we daydream or
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fantasize and are commonly associated with creativity and
intuition [30]. But our studies did not differentiate between
the high and low theta; instead, we combined all together;
thus, the observed 1/f values could be the activities of higher
theta indicating inwardly-focused problem-solving tasks like
memorization or recall. Studies have shown Alpha power
could indicate a person is focused on a specific thought
and not paying attention to unwanted distractions [30]; it is
also associated with a state of relaxation and represent the
brain shifting into an idling gear, waiting to respond when
needed. On the other hand, the Beta power is present when
we are in a state of mental or intellectual activity and outward
focus, like thinking, problem-solving, processing information,
or feeling anxious [30]. And Gamma is considered essential
for information and sensory-binding and is present during
cognitive thought when the brain is processing and linking
data from all parts of the brain [30]. However, the presence of
all these frequency bands in our studies is an indication of the
presented face cognitive process that involves the participant’s
peaceful expectation, memory process, familiarity, thinking,
and problem-solving activities. The histogram plots do not
necessarily indicate which of these bands is bigger over time or
which is more frequent over time because the (1/f) is a scale-
free metric. While theta and alpha showed differences and a
slight difference in the gamma band, the beta (both low and
high) showed no difference. This suggests that at the occipital
electrode 01, theta, alpha, and gamma bands may be suitable
candidate frequencies bands for investigating familiar faces at
the occipital electrode 01.

Fig. 8: New faces vs. familiar faces from the 01 electrode.

Table I show the classification results of whether a face is
new or familiar. We compared the conventional CNN and the
”ConvoForest” on the validation and test sets. CNN result was
49.0% average accuracy on the validation set with an F1 score
of 0.44. CNN produced 52.0% average accuracy on the test
set with an F1 score of 0.45. This suggests that CNN may not
be effective at generalizing when trained on limited (< 100)
datasets. However, the ”ConvoForest” produced 74.0% average
accuracy on the validation set with an F1 score of 0.75. And

TABLE I: CNN and ”ConvoForest” Classification of new and
familiar faces

Subject-dependent Classification

- CNN ConvoForest

- Val. Test Val. Test

Subject Acc. F1 Acc. F1 Acc. F1 Acc. F1

S03 0.5 0.0 0.5 0.0 0.75 0.77 0.87 0.88

S05 0.17 0.17 0.5 0.36 0.58 0.71 0.79 0.82

S06 0.5 0.67 0.5 0.67 0.71 0.67 0.78 0.78

S07 0.79 0.8 0.56 0.53 0.79 0.8 0.75 0.75

S09 0.42 0.46 0.64 0.67 0.58 0.44 0.79 0.80

S11 0.5 0.67 0.5 0.67 0.5 0.46 0.75 0.75

S12 0.5 0.0 0.5 0.0 0.5 0.63 0.75 0.78

S13 0.5 0.67 0.5 0.67 0.93 0.93 0.75 0.71

S15 0.5 0.0 0.5 0.0 1.0 1.0 0.75 0.78

S16 0.5 0.67 0.5 0.67 0.93 0.93 0.94 0.93

S17 0.5 0.67 0.5 0.67 0.83 0.86 0.79 0.77

AVG 0.49 0.44 0.52 0.45 0.74 0.75 0.79 0.8

on the test set, it had 79.0% average accuracy with an F1 score
of 0.8. We are suggesting the ”ConvoForest” performed better
than our crafted CNN because the same convolution layers
were applied to both procedures but ”ConvoForest” performed
better. We believe the better performance of ”ConvoForest”
is because only a subset of the features from the flattened
CNN features is applied and the robust behavior of random
forest against overfitting. We believe other ensemble classifiers
where a subset of the features are used to find the decision
boundary may also be effective when combined with CNN for
limited dataset image classification. Random forest generates
multiple trees; for each tree, the number of features applied
to each tree equals the square root of the total features from
the convolution layer. Thus, only a subset of the full features
is used for each tree, and during testing, they(all trees) form
an ensemble classifier. Moreover, we displayed the F1 score
because sometimes our datasets are imbalanced, and the F1
score is a better metric for evaluating the model.

V. CONCLUSION

In this paper, we presented the ”ConvoForest” classification
technique on a limited dataset of EEG from face familiarity
judgments (seen and unseen faces) in an episodic short-term
recognition memory test. Deep learning has proven effective
for image classification when enough training datasets are
present. However, when there is a limited dataset for training,
CNN fully connected layer may overfit the data and fail to
generalize effectively. Therefore, we removed the dense layer
from CNN and replaced it with a random forest classifier.
So that the feature extraction ability of CNN can be preserved
while we use a subset of the extracted feature for classification
through a random forest. Compared with conventional CNN,
where the dense layer was present, ”ConvoForest” performed
better with an average subject-dependent classification accu-
racy of 79.0% and an F1 score of 0.80. The effectiveness
of random forest is a prospect for applying other applicable
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traditional classifiers together with CNN in the future. We
hope to conduct more experiments and analyses with face-
name associations to investigate familiarity and recollection
memory in the future.
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